Manual for the program MPI
Norman D. Verhelst
Introduction
The program MPI computes the misplacement index (MPI) as described in Kaftandjieva (2010). This index, however, is closely related to a rank correlation coefficient known as Goodman’s and Kruskal’s gamma, which in turn is closely related to Kendall’s tau coefficient. In this introduction the relation to the coefficient gamma is discussed and a possible problem with the MPI in practical cases is solved at the same time.

A small example is taken to expalin the gamma coefficient. Suppose there are six items, labeled A, B,..., F. For each item we have two measures: the ‘objective’ difficulty (as given by a p-value or some other index) and an assigned level, as the outcome of a judgment, for example. Table 1 gives an example. For the gamma coefficient the numbers in the table are considered as ordinal numbers, i.e. the magnitude of the numbers does not matter, the only relation that matters is if two numbers are equal or not, and if not equal, which one of the two is the largest. In Table 1, a simple example is given for 6 items, labeled A, B,..., F. The middle column is referred to as ‘objective’ difficulty (e.g., derived from the p-values), the right-most column reflects the level allocation by a judge. For both these columns, it is assumed that the larger the number the more difficult the item. Example: according to the ‘objective’ difficulty measure, item E is more difficult than item D, but according to the judgment item D is the more difficult one of these two.

Table 1. Example to compute the gamma-coefficient

	Item
	‘objective’ difficulty
	judgement

	A
	1
	2

	B
	2
	3

	C
	3
	2

	D
	4
	4

	E
	5
	3

	F
	6
	4

To compute the gamma coefficient one considers all pairs of items, and allocates them to one of three categories:

· undecided, if on one or both rankings there is a tie (an equality of the rank numbers).

· concordant pair: the rank numbers for both rankings are in the same order.

· discordant pair: the rank numbers for both rankings are in opposite order.

In Table 2, each pair in the example is allocated to one of the categories, and for each category, the number of pairs is counted: nu, the number of undecided pairs; nc, the number of concordant pairs and nd, the number of discordant pairs.
Table 2. Undecided, concordant and discordant pairs of items

	category
	list
	frequency

	undecided
	(A,C), (B,E), (D,F)
	nu = 3

	concordant
	(A,B), (A,D), (A,E), (A,F), (B,D), (B,F), (C,D), (C,E), (C,F), (E,F)
	nc = 10

	discordant
	(B,C), (D,E)
	nd = 2

The formula for the Goodman-Kruskal coefficient gamma is

[image: image1.wmf]cd

cd

nn

nn

g

-

=

+

(1)

In the example (see Table 2), one finds immediately that γ = (10-2)/(10+2) = 2/3 = 0.667
The MPI-index is closely related to the γ-coefficient:

[image: image2.wmf]1

2

MPI

g

+

=

(2)

The following observations may be useful:

· If there are no discordant pairs, then γ = MPI = 1.

· If there are no concordant pairs, then γ = -1 but MPI = 0.

· If there are as many concordant as discordant pairs, then γ = 0 but MPI = 0.5
· If all pairs are undecided, then γ is not defined.

The formula given in Kaftandjieva (2010, p. 58) for the MPI is correct under the following conditions:

· The judgments (allocations of items to levels) may contain ties, and this will be usually the case since the number of levels is usually less than the number of items.

· The ranking of the items in terms of an objective index of difficulty (p-values, or difficulty parameters in an IRT-analysis) must not contain ties. In many cases this will hold, but there may be cases where two or more items have the same p-value. In this case the formula given by Kaftandjieva is no longer correct. The computer program MPI, however, allows for ties in both rankings, since it uses the formulae (1) and (2) given above.

The program MPI
1. The program MPI (stored in MPI.EXE) is a DOS application. To run it, one can best open a DOS-box (or execute CMD.EXE which is usually stored in c:\windows\system32)

2. To run the program one can follow 2 ways:

a. Type MPI [enter]. The program will start and prompt for the input filename.

b. Type MPI <myjob.dat> [enter], where <myjob.dat> is the name of the input file. The name of this file is completely arbitrary. But if the default directory (folder) in the DOS box is not the one where the input file is stored, then the complete path must be specified. The output is always written in the same directory as the input file.

3. The name of the input file (inclusive path if used) must not be longer than 80 characters.

4. The name of the output file is the same as the name of the input file, but its extension is .MPI. If the input file happens to have .MPI as extension, it will be overwritten.

5. The first record of the input file contains five numbers (separated by at least one blank or a comma):

a. The number of items

b. The number of judges

c. The minimum level (over judges; i.e. the minimum that legally can occur)

d. The maximum level

e. The number 1 or the number -1. See below for the meaning of this number.

6. The rest of the input file contains one record per item; each record contains

a. An item ID. This ID must be numerical and not larger in absolute value than 32,767

b. An index of the difficulty of the items, e.g., the rank number of the difficulty, the p-value of the item or the difficulty parameter when one uses an IRT model. If higher numbers indicate more difficult items (like in using difficulty parameters), then the fifth number in the first record (see paragraph 5.e) should be 1; If higher numbers indicate easier items (like with p-values), then the number in the first line must be -1.

c. For each judge the level number assigned to the item. If this number is outside the range [minimum level, maximum level], it will be considered as a missing observation for this item-judge combination

7. If there are more item records than specified by the number in the first record, the last records will not be read, but no warning will be issued. If there are less records than specified, the program will stop with an error message.

8. All records are read in free format, i.e., a built-in routine will search for the numbers it needs. Numbers on a record may be separated by one or more blanks, a comma or a tab. Therefore one cannot use blank spaces to indicate missing values.

9. All numbers specified in the input file must be integer (and not contain a decimal point) with the exception of the number specified in 6.b. above, which may or may not contain a decimal point. (Notice that the program requires the use of the point as an indicator of decimal numbers, not a comma.)
10. The order of the lines after the first one is arbitrary.
11. The output consists of four parts:

a. A summary: input file name, #items, #judges, minimum and maximum level

b. A frequency table (rows = judges; columns = levels)

c. A table with the MPI: rows refer to items, columns refer to judges. The bottom of the table gives two extra lines: MPI for the judge and number of missings per judge. In the body of the table, an entry corresponding to a missing value is indicated by ****** The item ID is printed in front of each row.
d. A table with the Goodman-Kruskal coefficients. It has the same structure as the preceding table.

12. Adaptation to incomplete data consists in adapting for each judge the total number of items to the number actually responded to. Example: if there are 27 items and judge 1 has skipped two items, there will be two ****** patterns in the column of this judge and formulae for this judge are computed with number of items equal to 25.

13. It may happen that the coefficients γ and MPI are not defined, for example, if a judge allocates all items to the same level. In that case, both coefficients take the value 9.999 in the output.

Example

Together with the program and the present manual, an example is provided. The input file is called example.dat and the output file is example.MPI. The data for this example are partly realistic as some of them have been collected in a real standard setting set-up:

1. The total number of items is 27.
2. The levels for the items range from 1 to 5.

3. In the input file the data for two real judges (number 1 and 2) have been used and data for two artificial judges (3 and 4) have been added. The data for judge number 3 are just ‘randomly’ generated (by the author) and the data for judge number 4 are in complete agreement with the empirical difficulty of the items.
4. The index for the difficulty used is the p-value of the items; therefore the last number in line 1 of the input is -1. Note that there are ties in the difficulty index.

5. The labels are the labels in the original study. The input file is sorted in ascending order of the labels. Notice that in general the order of the items is arbitrary

6. For the sake of the example, the level assigned to the item with ID 153 has been changed to a value of zero for the first judge, indicating that this entry is missing (zero is outside the range 1-5).
7. In the second column of the input file, the p-value is given (up to three decimals). Notice that the first item in the sequence has the highest p-value, and the last one has the lowest p-value.
8. In the output file, the MPI-value for item 153 and judge number 1 is represented as ‘*****’, indicating that the value is missing. and in the last of the table, it is inidicated that one value was missing for this judge, but zero for the others.
9. For the perfect judge, all values equal one. Notice that for the third judge (with the ‘random’ allocation of levels) the MPI-indices per item are not very close to zero. Inspection of the table with the Goodman-Kruskal coefficients reveals that for most items the coefficients are negative (meaning that the random allocation by the author was not really random).
Reference

Kaftandjieva, F. (2010). Methods for Setting Cut Scores in Criterion-referenced Achievement Tests. Arnhem: EALTA.
_1337619023.unknown

_1337619371.unknown

